Co-Learning of Task and Sensor Placement for Soft Robotics
نویسندگان
چکیده
Unlike rigid robots which operate with compact degrees of freedom, soft must reason about an infinite dimensional state space. Mapping this continuum space presents significant challenges, especially when working a finite set discrete sensors. Reconstructing the robot's from these sparse inputs is challenging, since sensor location has profound downstream impact on richness learned models for robotic tasks. In work, we present novel representation co-learning placement and complex Specifically, neural architecture processes on-board information to learn salient selection placements optimal task performance. We evaluate our model learning algorithm six robot morphologies various supervised tasks, including tactile sensing proprioception. also highlight applications motion subspace visualization control. Our method demonstrates superior performance in algorithmic human baselines while latent spaces that are semantically meaningful.
منابع مشابه
the effects of time planning and task complexity on accuracy of narrative task performance
هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...
Soft robotics for chemists.
In areas from assembly of machines to surgery, and from deactivation of improvised explosive devices (IEDs) to unmanned flight, robotics is an important and rapidly growing field of science and technology. It is currently dominated by robots having hard body plans—constructions largely of metal structural elements and conventional joints—and actuated by electrical motors, or pneumatic or hydrau...
متن کاملDesign and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks
Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...
متن کاملDesign and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks
Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...
متن کاملCo-Optimizating Multi-Agent Placement with Task Assignment and Scheduling
To enable large-scale multi-agent coordination under temporal and spatial constraints, we formulate it as a multi-level optimization problem and develop a multi-abstraction search approach for cooptimizing agent placement with task assignment and scheduling. This approach begins with a highly abstract agent placement problem and the rapid computation of an initial solution, which is then improv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE robotics and automation letters
سال: 2021
ISSN: ['2377-3766']
DOI: https://doi.org/10.1109/lra.2021.3056369